CS 188: Artificial Intelligence Spring 2010

Lecture 13: Probability 3/2/2010

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein.

Announcements

- Upcoming
 - **new** Tomorrow/Wednesday: probability review session
 - 7:30-9:30pm in 306 Soda
 - P3 due on Thursday (3/4)
 - W4 going out on Thursday, due next week Thursday (3/11)
 - Midterm in evening of 3/18

Today

- We're almost done with search and planning!
 - MDP's: policy search wrap-up
- Next, we'll start studying how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - ... lots more!
- Third part of course: machine learning

3

Policy Search

MDPs recap

- MDP recap: (S, A, T, R, s₀, γ)
 - In small MDPs: can find V(s) and/or Q(s,a)
 - Known T, R: value iteration, policy iteration
 - Unknown T, R: Q learning
 - In large MDPs: cannot enumerate all states

5

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

```
\begin{split} & \textit{transition} &= (s, a, r, s') \\ & \textit{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} & \textit{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} \ f_i(s, a) & \textit{Approximate Q's} \end{split}
```

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Policy Search Idea

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

7

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
 - → Mostly applicable when prior knowledge allows one to choose a representation with a very small number of free parameters to be learned

Toddler (Tedrake et al.)

Take a Deep Breath...

- We're done with search and planning!
- Next, we'll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - ... lots more!
- Third part of course: machine learning

Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
 - Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!
- Probability review session tomorrow 7:30-9:30pm in 306 Soda --- you will benefit from it for many lectures/assignments/exam questions if any of the material we are about to go over today is not completely trivial!!

22

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
- Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(red 3) P(orange 3)		P(green 3)	
0.05	0.15	0.5	0.3	

Uncertainty

- General situation:
 - Evidence: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Hidden variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

26

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (sometimes write as {+r, ¬r})
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Unobserved random variables have distributions

P(T)				
Т	Р			
warm	0.5			
cold	0.5			

P(W)				
W	Р			
sun	0.6			
rain	0.1			
fog	0.3			
meteor	0.0			

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

• Must have:
$$\forall x P(x) \ge 0$$
 $\sum_{x} P(x) = 1$

28

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		

cold rain 0.3

- Size of distribution if n variables with domain sizes d?
- Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

For all but the smallest distributions, impractical to write out

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction probs:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

30

Events

An event is a set E of outcomes

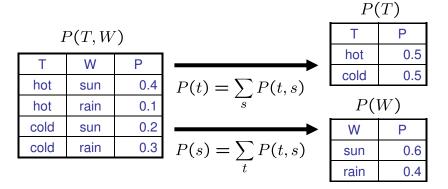
$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

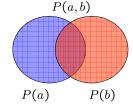


$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$
 ₃₂

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

P(W = r | T = c) = ???

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

 $\begin{array}{|c|c|c|}\hline P(W|T=hot)\\\hline \hline W & P\\\hline sun & 0.8\\\hline rain & 0.2\\\hline \end{array}$

P(W|T = cold)

W	Р
sun	0.4
rain	0.6

Joint Distribution

P(T, W)

<u> </u>					
Т	W	Р			
hot	sun	0.4			
hot	rain	0.1			
cold	sun	0.2			
cold	rain	0.3			

34

Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

P(T, W)

	, ,		-		,			D/m	`
Т	W	Р	P(T,r)			P(T r)			
hot	sun	0.4	_	Т	R	Р		Т	Р
hot	rain	0.1		hot	rain	0.1	Normaliza	hot	0.25
cold	sun	0.2	Select	cold	rain	0.3	Normalize	cold	0.75
cold	rain	0.3				•			

Why does this work? Sum of selection is P(evidence)! (P(r), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$
 35